

### **Entrance Test: 12th (Beta)**

| MM: 180                        |                                                                    | Time: 2 Hours               |
|--------------------------------|--------------------------------------------------------------------|-----------------------------|
|                                | PLEASE FILL IT IN CAPITAL LETTERS                                  |                             |
| Enrollment No.                 |                                                                    |                             |
| Students Name                  | :                                                                  |                             |
| Father's Name                  | :                                                                  |                             |
| School                         | :<br>:                                                             |                             |
| Previous institute (           | (if any) :                                                         |                             |
| CGPA/% in 11 <sup>th</sup>     | :                                                                  |                             |
| Achievements                   | : (N                                                               | TSE/OLYMPIAD etc if any)    |
| I hereby admit tha any action. | t all the information given here is true and in case of any discre | pancy I shall be liable for |
| (Invigilator)                  |                                                                    | tudent's Signature)         |

### PART - I: MATHS

# SECTION - I (Single Correct Choice Type)

This Section contains **20 Single choice questions**. Each question has four choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct.

#### **Marking Scheme:**

You will be awarded **3 marks** for correct answer, **-1** for wrong answer and zero if Question is left un-attempted.

- 1. If  $a,b,c \in \mathbb{R}$  and (a+b+c)c<0, then the quadratic equation  $p(x)=ax^2+bx+c=0$  has
  - (a) two negative roots

(b) two real roots

(c) two imaginary roots

(d) none of these

Answer :

- 2. The set of all values of k for which the equation  $x^2 + 2(k-1)x + (k-5) = 0$  has at least one non-negative root is
  - (a)  $[1,\infty)$

(b) [-1, 1]

(c)  $(-\infty, -5]$ 

(d)  $(-\infty, 5]$ 

Answer :

- 3. If roots of the equation  $x^2 2mx + m^2 1 = 0$  lie in the interval (-2, 4), then
  - (a) -1 < m < 3

(b) 1 < m < 5

(c) 1 < m < 3

(d) -1 < m < 5

Answer :

- 4. If x is real, then the least value of the expression  $\frac{x^2 6x + 5}{x^2 + 2x + 2}$  is
  - (a) -1

- (b) -1/3
- (c) -1/2
- (d) none of these

Answer :

- **5.** Given a sequence of four numbers such that the first three are in G.P. and the last three are in A.P. with common difference 6. If the first and the fourth number are equal, then common ratio of the G.P. is
  - (a) –2

(b) 2

- (c) 3
- (d) -:

Answer :

| 6.      | <b>6.</b> If x,y,z are real and $4x^2 + 9y^2 + 16z^2 - 6xy - 12yz - 8zx = 0$ , then x, y, z are |                |                                      |                |                                              |         |                   |
|---------|-------------------------------------------------------------------------------------------------|----------------|--------------------------------------|----------------|----------------------------------------------|---------|-------------------|
|         | (a) A.P.                                                                                        | (b)            | G.P.                                 | (c)            | H.P.                                         | (d)     | none of these     |
| Answ    | ver :                                                                                           |                |                                      |                |                                              |         |                   |
| 7.      | Let $a_n = \underbrace{1111}_{\text{ntimes}}$ . The rem                                         | ainder         | when $a_{124}$ is divided b          | y 271          | is                                           |         |                   |
|         | (a) 23                                                                                          | (b)            | 25                                   | (c)            | 27                                           | (d)     | 29                |
| Answ    | ver:                                                                                            |                |                                      |                |                                              |         |                   |
| 8.      | Sum of the series $S = (n)(n) +$                                                                | (n – 1)(r      | $(n+1) + (n-2)(n+2) + \dots +$       | +1(2n+         | 1) is                                        |         |                   |
|         | (a) n <sup>3</sup>                                                                              | (b)            | $\frac{1}{6}$ n(n+1)(n+2)            | (c)            | $\frac{1}{3}$ n <sup>3</sup> -n <sup>2</sup> | (d)     | none of these     |
| Answ    | ver:                                                                                            |                | Ü                                    |                |                                              |         |                   |
| 9.      | The number of 10 digit number                                                                   | oers th        |                                      | sing the       | e digits 2 and 3 is                          |         |                   |
|         | (a) ${}^{10}C_2 + {}^9C_2$                                                                      | (b)            | $2^{10}$                             | (c)            | $2^{10}-2$                                   | (d)     | 10!               |
| Answ    | ver:                                                                                            |                |                                      |                |                                              |         |                   |
| 10.     | The number of ways in whice (a) 18                                                              | h we c         | an get a score of 11 by<br>27        | y throw<br>(c) | ring three dice is<br>45                     | (d)     | 56                |
| Answ    | ver :                                                                                           |                |                                      |                |                                              |         |                   |
| 11.     | The number of ways in whic                                                                      | h we c         | an distribute <i>mn</i> stude        | nts equ        | ually among <i>m</i> sect                    | ions is | given by          |
|         | (a) $\frac{(mn)!}{n!}$                                                                          | (b)            | (mn)!<br>(n!) <sup>m</sup>           | (c)            | (mn)!<br>m!n!                                | (d)     | (mn) <sup>m</sup> |
| Answer: |                                                                                                 |                |                                      |                |                                              |         |                   |
| 12.     | If a polygon has 90 diagonal (a) 12                                                             | ls, the<br>(b) | number of its sides is $\mathfrak g$ | given b<br>(c) | y<br>10                                      | (d)     | 15                |
| Answ    |                                                                                                 | ( )            |                                      | ( )            |                                              | ( )     |                   |
|         |                                                                                                 |                | Rough W                              | ork            |                                              |         |                   |
|         |                                                                                                 |                |                                      |                |                                              |         |                   |

(d)  $5 + \log_{\sqrt{2}}(3)$ 

|     |                                                                  |                                                                                    |                    |     | Entrance '                |
|-----|------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------|-----|---------------------------|
| 13. | If the middle term in th                                         | e expansion of $\left(\frac{1}{x} + x^{\log_2 x}\right)^5$ is<br>(b) $\sqrt{2}$ ,4 | s 40 then x equals |     |                           |
|     | (a) $1/\sqrt{2}$ ,2                                              | (b) $\sqrt{2},4$                                                                   | (c) $1/\sqrt{2},4$ | (d) | $\sqrt{2}$ ,1/ $\sqrt{2}$ |
| Ans | wer :                                                            |                                                                                    |                    |     |                           |
| 14. |                                                                  | expansion $(x + x^{\log_5 x})^5$ is 2, the                                         |                    |     |                           |
|     | (a) 1/5, 5                                                       | (b) $1/5, \sqrt{5}$                                                                | (c) $\sqrt{5}$ , 5 | (d) | $1/\sqrt{5},5$            |
| Ans | wer :                                                            |                                                                                    |                    |     |                           |
| 15. | Coefficient of x9 in the                                         | expansion of                                                                       |                    |     |                           |
|     | $\left(x^3 + \frac{1}{2^{\log_{\sqrt{2}}(x^{3/2})}}\right)^{11}$ |                                                                                    |                    |     |                           |

Answer:

is

(a)

16. If three successive coefficient in the expansion of  $(1+x)^n$  are in A.P., then (n+2) is (b) at most 19 a perfect square at least 19 (c) (d) a perfect cube Answer:

(c)

520

(b)

330

- If  $\tan \alpha = 5/6$  and  $\tan \beta = 1/11$ , then  $\alpha + \beta = \pi/6$ (b)  $\alpha + \beta = \pi/4$ (c)  $\alpha + \beta = \pi/3$ (d) none of these Answer:
- **18.** If  $\sin \alpha + \cos \alpha = \frac{\sqrt{7}}{2}$ ,  $0 < \alpha < \frac{\pi}{6}$ , then  $\tan \frac{\alpha}{2}$  is equal to al to (c)  $2-\sqrt{7}$ (b)  $(1/3)(\sqrt{7}-2)$ (d)  $(1/3)(2-\sqrt{7})$ Answer:

------Rough Work-----

|      |        |                           |                        |            |                                | Entrance Test : Be | eta |
|------|--------|---------------------------|------------------------|------------|--------------------------------|--------------------|-----|
| 19.  | If the | lines $x + 2ay + a = 0$ , | x + 3by + b = 0 and x  | +4cy+c=0   | are concurrent, then a, b, c   | are in             |     |
|      | (a)    | A.P.                      |                        |            | G.P.                           |                    |     |
|      | (c)    | H.P.                      |                        |            | none of these                  |                    |     |
|      | _      |                           |                        |            |                                |                    |     |
| Answ | er :   |                           |                        |            |                                |                    |     |
| 20.  | The s  |                           | 5 = 0, x - 2y - 10 = 0 |            | = 0 and $x + 3y + 10 = 0$ form | n the sides of a   |     |
|      | (a)    | quadrilateral             |                        | (b)<br>(d) | cyclic quadrilateral           |                    |     |
|      | (c)    | rectangle                 |                        | (d)        | parallelogram                  |                    |     |
| Answ | er :   |                           |                        |            |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |
|      |        |                           | Rou                    | igh Work   |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |
|      |        |                           |                        |            |                                |                    |     |

### PART - II: Physics

# SECTION - I (Single Correct Choice Type)

This Section contains 20 Single choice questions. Each question has four choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct.

#### Marking Scheme:

You will be awarded **3 marks** for correct answer, -1 for wrong answer and zero if Question is left un-attempted.

The displacement-time graph of a moving particle is shown in the adjoining figure. The instantaneous velocity of the 21. particle is negative at the point:



- (a) D
- (c)

- (b)

Answer:

- 22. Two balls of different masses m<sub>a</sub> and m<sub>b</sub> are dropped from two different heights, viz, a and b. The ratio of times taken by the balls to drop through these distances is :
  - (a) a:b

(b) b:a

 $\sqrt{a}:\sqrt{b}$ (c)

 $a^2:b^2$ (d)

Answer:

- 23. A point moves with uniform acceleration and  $v_1, v_2$  and  $v_3$  denote the average velocities in the three successive intervals of time  $t_1, t_2$  and  $t_3$ . Which of the relation given below is correct?
  - $(\nu_1 \nu_2): (\nu_2 \nu_3) = (t_1 t_2): (t_2 + t_3)$
- $(\nu_1 \nu_2): (\nu_2 \nu_3) = (t_1 + t_2): (t_2 + t_3)$
- $(\nu_1 \nu_2) : (\nu_2 \nu_3) = (t_1 t_2) : (t_1 t_3)$

 $(\nu_1 - \nu_2): (\nu_2 - \nu_3) = (t_1 - t_2): (t_2 - t_3)$ 

Answer:

|         |                      |                                                                         |                            |                                                 |                   |                                          |           | Entrance Test: Beta                                                       |
|---------|----------------------|-------------------------------------------------------------------------|----------------------------|-------------------------------------------------|-------------------|------------------------------------------|-----------|---------------------------------------------------------------------------|
| 24.     |                      | velocity $\upsilon$ and displace 1 second? (Given that                  |                            | -                                               |                   | $^2 = kr$ , where k is a                 | consta    | ant. What will be the velocity                                            |
|         | (a)                  | $\sqrt{kr}$                                                             | (b)                        | $kr^{3/2}$                                      | (c)               | $\frac{k}{2}r^0$                         | (d)       | Data is not sufficient                                                    |
| Ansv    | ver : [              |                                                                         |                            |                                                 |                   |                                          |           |                                                                           |
| 25.     |                      | all whose kinetic energ<br>t of its flight will be:                     | y is E,                    | _                                               |                   |                                          | al, its k | inetic energy at the highest                                              |
|         | (a)                  | Е                                                                       | (b)                        | $\frac{E}{\sqrt{2}}$                            | (c)               | $\frac{E}{2}$                            | (d)       | zero                                                                      |
| Ansv    | ver : [              |                                                                         |                            |                                                 |                   |                                          |           |                                                                           |
| 26.     |                      |                                                                         | ntally w                   | ith a speed of 180 km                           | /hr dro           | ps a food packet w                       | hile flyi | ing at a height of 490m. The                                              |
|         | (a)                  | zontal range is :<br>180 m                                              | (b)                        | 980 m                                           | (c)               | 500 m                                    | (d)       | 670 m                                                                     |
| Ansv    | ver : [              |                                                                         |                            |                                                 |                   |                                          |           |                                                                           |
| 27.     |                      | tall building are 30 m<br>ve the ground in one bu<br>2 ms <sup>-1</sup> |                            |                                                 |                   |                                          |           | ntally from a window 150 m<br>e other building is :<br>8 ms <sup>-1</sup> |
| Ansv    | ver : [              |                                                                         |                            |                                                 |                   |                                          |           |                                                                           |
| 28.     |                      | blocks of masses 2 kg<br>I is applied to the block<br>4 N               |                            |                                                 |                   |                                          |           | e. When a horizontal force of<br>no blocks is :<br>1 N                    |
| Ansv    | ver : [              |                                                                         |                            |                                                 |                   |                                          |           |                                                                           |
| 29.     | N ad<br>20 k<br>10 k | cts on the 20 kg mass. A<br>g mass is :                                 | 20 kg re<br>At the ir<br>→ | espectively are connec<br>nstant when the 10 kg | cted by<br>mass I | a massless spring<br>nas an acceleration | as sho    | own in figure. A force of 200 ms <sup>-2</sup> , the acceleration of the  |
|         | (a)                  | $2 \text{ms}^{-2}$                                                      | (b)                        | $4 \text{ms}^{-2}$                              | (c)               | $10 \mathrm{ms}^{-2}$                    | (d)       | $20\mathrm{ms}^{-2}$                                                      |
| Answer: |                      |                                                                         |                            |                                                 |                   |                                          |           |                                                                           |
|         |                      |                                                                         |                            | ·Rough W                                        | ork               |                                          |           |                                                                           |
|         |                      |                                                                         |                            | J                                               |                   |                                          |           |                                                                           |

30. A block is dragged on a smooth plane with the help of a rope which moves with a velocity  $\upsilon$  as shown in figure. The horizontal velocity of the block is:



(a)  $\upsilon$  (b)

- vsin $\theta$

Answer:

31. Three masses of 1 kg, 6 kg and 3 kg are connected to each other with threads and are placed on a table as shown in



What is the acceleration with which the system is moving? (Take  $g = 10 \text{ ms}^{-2}$ ) (a) Zero (b)  $1 \text{ ms}^{-2}$  (c)  $2 \text{ ms}^{-2}$ 

- (b)
- (d)  $3 \text{ ms}^{-2}$

Answer:

- 32. Work done in time t on a body of mass m which is accelerated from rest to a spread v in time  $t_1$  as a function of time t is given by:
  - (a)  $\frac{1}{2}$ m $\frac{\upsilon}{t_1}$ t<sup>2</sup>

(c)  $\frac{1}{2} \left( \frac{\mathsf{m} \, \upsilon}{\mathsf{t}_1} \right)^2 \mathsf{t}^2$ 

(d)  $\frac{1}{2} m \frac{v^2}{t_1^2} t^2$ 

Answer:

- 33. Work-energy theorem is valid in the presence of:
  - (a) external forces only
  - conservative forces only (c)
  - all types of forces (e)

- (b) internal forces only
- (d) non-conservatives forces only

Answer:

A mass of 0.5 kg moving with a speed of 1.5 m/s on a horizontal smooth surface, collides with a nearly weightless 34. spring of force constant K = 50 N/m. The maximum compression of the spring would be:



- (b) 0.12 m
- 1.5 m
- (d) 0.5 m

Answer:

- 35. A body is dropped from a height h. If it acquires a momentum p, then the mass of the body is:

Answer:

- A system consists of mass M and m(<<M). The centre of mass of the system is: 36.
  - (a) at the middle

nearer to M

(c) nearer to m (d) at the position of larger mass

Answer:

37. A spherical hollow is made in a lead sphere of radius R, such that its surface touches the outside surface of lead sphere and passes through the centre. What is the shift in the centre of mass of lead sphere due to the hollowing?



(a)

(b)

- (d) R

Answer:

**38.** Masses of 2 kg each are placed at the corners B and A of a rectangular plate ABCD as shown in the figure. A mass of 8 kg has to be placed on the plate so that the centre of mass of the system should be at the centre O. Then the mass should



be placed at:

- (a) 1 m from O on OE
- (b) 2m from O on OF
- (c) 2 m from O on OG (d)

2 m from O on OH

Answer:

**39.** A block Q of mass M is placed on a horizontal frictionless surface AB and a body P of mass m is released on its frictionless slope. As P slides by a length L on this slope of inclination  $\theta$ , the block Q would slide by a distance :



- (a)  $\frac{m}{M}L\cos\theta$
- (b)  $\frac{m}{(M+m)}$
- (c)  $\frac{(M+m)}{m!\cos\theta}$
- (d)  $\frac{\text{mL}\cos\theta}{(\text{m}+\text{M})}$

Answer :

**40.** Four partiles of masses  $m_1 = 2m$ ,  $m_2 = 4m$ ,  $m_3 = m$  and  $m_4$  are placed at four corners of a square. What should be the value of  $m_4$  so that the centres of mass of all the four particles are exactly at the centre of the square?



- (b) 8m
- (d) None of these

Answer :

Rough Work

## PART - III: Chemistry

## SECTION - I (Single Correct Choice Type)

This Section contains **20 Single choice questions**. Each question has four choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct.

### Marking Scheme:

You will be awarded **3 marks** for correct answer, **-1** for wrong answer and zero if Question is left un-attempted.

| 11.         | 1. The crystalline salt Na <sub>2</sub> SO <sub>4</sub> .xH <sub>2</sub> O on heating loses 55.9% of its weight. The formula of the crystalline salt is:                                                                                                                                                                                                                 |                                 |                                                                          |  |  |  |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------|--|--|--|--|--|--|
|             | (a) $Na_2SO_4.5H_2O$                                                                                                                                                                                                                                                                                                                                                     | (b)                             | $Na_2SO_4.7H_2O$                                                         |  |  |  |  |  |  |
|             | (c) $Na_2SO_4.2H_2O$                                                                                                                                                                                                                                                                                                                                                     | (d)                             | $\mathrm{Na}_{2}\mathrm{SO}_{4}.10\mathrm{H}_{2}\mathrm{O}$              |  |  |  |  |  |  |
| Ansv        | wer:                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                                                          |  |  |  |  |  |  |
| 12.         | In the reaction, $2AI(s)+6HCI(aq) \rightarrow 2AI^{3+}(aq)+6CI^{-}(aq)+3$<br>(a) 11.2 L H <sub>2</sub> (g) at STP is produced for every mole<br>(b) 6 L HCI (aq) is consumed for every 3 L H <sub>2</sub> (g) produced<br>(c) 33.6 L H <sub>2</sub> (g) is produced regardless of temperatured<br>(d) 67.2 L H <sub>2</sub> (g) at STP is produced for evert mole of $A$ | HCI (aq)<br>uced.<br>re and pre | essure for every mole of Al that reacts.                                 |  |  |  |  |  |  |
| Ansv        | wer:                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                                                          |  |  |  |  |  |  |
| 13.         | Which has maximum number of atoms? (a) 24 g of C (12) (c) 27 g og Al (27)                                                                                                                                                                                                                                                                                                | (b)<br>(d)                      | 56 g of Fe (56)<br>108 g of Ag (108)                                     |  |  |  |  |  |  |
| Ansv        | wer:                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                                                          |  |  |  |  |  |  |
| 14.         | The weight of a molecule of the compound $C_{60}H_{122}$ is (a) $1.4\times10^{-21} g$ (b) $1.09\times10^{-21} g$                                                                                                                                                                                                                                                         | :<br>(c)                        | $5.025 \times 10^{23} \mathrm{g}$ (d) $16.023 \times 10^{23} \mathrm{g}$ |  |  |  |  |  |  |
| Ansv        | wer:                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                                                          |  |  |  |  |  |  |
| <b>1</b> 5. | $6.02\times10^{20}$ molecules of urea are present in 100 mL of (a) $-0.001$ M (c) $-0.02$ M                                                                                                                                                                                                                                                                              | its solution (b) (d)            | on. The concentration of solution is<br>0.1 M<br>0.01 M                  |  |  |  |  |  |  |
| Ansv        | wer:                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                                                          |  |  |  |  |  |  |
|             | Rough                                                                                                                                                                                                                                                                                                                                                                    | Work                            |                                                                          |  |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                          |                                 |                                                                          |  |  |  |  |  |  |

- **46.** The angular momentum of electrons in the hydrogen atom that can be possible is :
  - (a)  $\frac{h}{\pi}$

(b) 2h

- (c)  $\frac{h}{4\pi}$
- (d)  $h \times \pi$

Answer :

- 47. The kinetic energy of an electron in the second Bohr orbit of a hydrogen atom is  $[a_0$  is Bohr radium]:
  - (a)  $\frac{h^2}{4\pi^2 ma_0^2}$

(b)  $\frac{h^2}{16\pi^2 \text{ma}_0^2}$ 

(c)  $\frac{h^2}{32\pi^2 ma_0^2}$ 

(d)  $\frac{h^2}{64\pi^2 ma_0^2}$ 

Answer :

48. P is the probability of finding the 1s electron of hydrogen atom in a spherical shell of infinitesimal thickness dr, at a distance r from the nucleus. The volume of this shell is  $4\pi r^2 dr$ . The qualitative sketch of the dependence of P on r is:









Answer :

- **49.** The correct order of second ionization enthalpy of carbon, nitrogen, oxygen and fluorine is :
  - (a) C > N > O > F
- (b) O > N > F > C
- (c) O > F > N > C
- (d) F > O > N > 0

Answer :

|      |                    |                                                                                |                |                                       |                                  |                                                                   |         | Entrance Test : Bet                     |
|------|--------------------|--------------------------------------------------------------------------------|----------------|---------------------------------------|----------------------------------|-------------------------------------------------------------------|---------|-----------------------------------------|
| 50.  | Whic               | h of the following oxide                                                       | es is mo       | ost acidic?                           |                                  |                                                                   |         |                                         |
|      | (a)                | Cl <sub>2</sub> O                                                              | (b)            | $\text{Cl}_2\text{O}_3$               | (c)                              | $Cl_2O_5$                                                         | (d)     | $Cl_2O_7$                               |
| Answ | er :               |                                                                                |                |                                       |                                  |                                                                   |         |                                         |
| 51.  | Whick<br>(a)       | h of the following sets $N^{3-}, O^{2-}, F^{-}, S^{2-}$                        | of ions<br>(b) | -                                     |                                  |                                                                   | (d)     | $Ba^{2+}$ , $Sr^{2+} < K^+$ , $Ca^{2+}$ |
| Answ | er:                |                                                                                |                |                                       |                                  |                                                                   |         |                                         |
| 52.  | Hybri<br>(a)       | disation on sulphur ato                                                        | om in S<br>(b) |                                       | (c)                              | sp <sup>2</sup> and sp <sup>3</sup>                               | (d)     | sp                                      |
| Answ | er :               |                                                                                |                |                                       |                                  |                                                                   |         |                                         |
| 53.  | Main<br>(a)<br>(c) | axis of a diatomic mole $\pi$ – molecular orbital $\delta$ – molecular orbital | ecule is       | s Ζ. Atomic orbitals p <sub>x</sub> a | and p <sub>y</sub><br>(b)<br>(d) | overlap to form whice $\sigma$ – molecular orbino bond will form  |         | he following orbital?                   |
| Answ | er :               |                                                                                |                |                                       |                                  |                                                                   |         |                                         |
| 54.  | In NC              | $D_3^-$ ion, the number of b                                                   | ond pa         | airs and lone pair of ele             | ctrons                           | on nitrogen atom a                                                | re:     |                                         |
|      | (a)                | 2, 2                                                                           | (b)            | 3, 1                                  | (c)                              | 1, 3                                                              | (d)     | 4, 0                                    |
| Answ | er :               |                                                                                |                |                                       |                                  |                                                                   |         |                                         |
| 55.  | Whic               | h of the following spec                                                        | ies is n       | on-linear?                            |                                  |                                                                   |         |                                         |
|      | (a)                | $ICl_2^-$                                                                      | (b)            | $I_3^-$                               | (c)                              | $N_3^-$                                                           | (d)     | $ClO_2^-$                               |
| Answ | er :               |                                                                                |                |                                       |                                  |                                                                   |         |                                         |
| 56.  | Whic               | h one of the following p                                                       | oair is is     | sostructural (i.e., havin             | g the s<br>(b)                   | came shape and hyburghted [NH <sub>3</sub> and NO $\frac{1}{3}$ ] | oridiza | tion)?                                  |
|      | (c)                | [NF <sub>3</sub> and BF <sub>3</sub> ]                                         |                |                                       | (d)                              | $[BF_4^- \text{ and } NH_4^+]$                                    |         |                                         |
| Answ | er : [             |                                                                                |                | ·····Rough W                          | 'ork                             |                                                                   |         |                                         |

| 57.     | Consider the molecules $CH_4$ , $NH_3$ and $H_2O$ . Which of the given statements is false? (a) The H-O-H bond angle in $H_2O$ is smaller than the H-N-H bond angle in $NH_3$ . |                                                                                            |            |                                                                            |  |  |  |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------|--|--|--|--|--|
|         | (b) The H-C-H bond angle in CH <sub>4</sub> is larger than the H-N-H bond angle in NH <sub>3</sub>                                                                              |                                                                                            |            |                                                                            |  |  |  |  |  |
|         | (c)                                                                                                                                                                             | ·                                                                                          | d angle    | e in $\mathrm{NH_3}$ , and the H-O-H bond angle in $\mathrm{H_2O}$ are all |  |  |  |  |  |
|         | (d)                                                                                                                                                                             | greater than $90^{\circ}$<br>The H-O-H bond angle in H <sub>2</sub> O is larger than the I | H-C-l      | H bond angle in $\operatorname{CH}_4$                                      |  |  |  |  |  |
| Answ    | Answer:                                                                                                                                                                         |                                                                                            |            |                                                                            |  |  |  |  |  |
| 58.     | (NH <sub>4</sub> )                                                                                                                                                              | $_2$ S (solid) $\longrightarrow$ NH $_3$ +H $_2$ S                                         |            |                                                                            |  |  |  |  |  |
|         |                                                                                                                                                                                 | otal pressure at equilibrium is 9 atm. Calculate $K_p$ :                                   |            | 2                                                                          |  |  |  |  |  |
|         | (a)<br>(c)                                                                                                                                                                      | 9 atm <sup>2</sup><br>108 atm <sup>3</sup>                                                 | (b)<br>(d) | 81 atm <sup>3</sup> None of these                                          |  |  |  |  |  |
|         | . ,                                                                                                                                                                             |                                                                                            | ` '        |                                                                            |  |  |  |  |  |
| Answ    | /er :                                                                                                                                                                           |                                                                                            |            |                                                                            |  |  |  |  |  |
| 59.     | The in                                                                                                                                                                          | nitial pressure for the dissociation reaction $A_2(g)$                                     | == 2A(g    | g) is 1 atm and increases by 20% when the reaction                         |  |  |  |  |  |
|         | reach                                                                                                                                                                           | es the equilibrium state. The $K_p$ for the reaction is:                                   |            |                                                                            |  |  |  |  |  |
|         | (a)<br>(c)                                                                                                                                                                      | 0.1 atm<br>1 atm                                                                           | (b)<br>(d) | 0.2 atm<br>2 atm                                                           |  |  |  |  |  |
|         | . ,                                                                                                                                                                             | ¬                                                                                          | ()         |                                                                            |  |  |  |  |  |
| Answ    | /er : _                                                                                                                                                                         |                                                                                            |            |                                                                            |  |  |  |  |  |
| 60.     |                                                                                                                                                                                 | ich of the following gaseous reactions increases in v                                      |            |                                                                            |  |  |  |  |  |
|         | (a)                                                                                                                                                                             | $2CO + O_2 \longrightarrow 2CO_2$                                                          | (b)        | $N_2 + 3H_2 \longrightarrow 2NH_3$                                         |  |  |  |  |  |
|         | (c)                                                                                                                                                                             | $PCl_5 \longrightarrow PCl_3 + Cl_2$                                                       | (d)        | $H_2 + Cl_2 \longrightarrow 2HCl$                                          |  |  |  |  |  |
| Answer: |                                                                                                                                                                                 |                                                                                            |            |                                                                            |  |  |  |  |  |
|         |                                                                                                                                                                                 |                                                                                            |            |                                                                            |  |  |  |  |  |
|         |                                                                                                                                                                                 |                                                                                            |            |                                                                            |  |  |  |  |  |
|         |                                                                                                                                                                                 |                                                                                            |            |                                                                            |  |  |  |  |  |
|         |                                                                                                                                                                                 |                                                                                            |            |                                                                            |  |  |  |  |  |
|         |                                                                                                                                                                                 |                                                                                            |            |                                                                            |  |  |  |  |  |
|         |                                                                                                                                                                                 |                                                                                            |            |                                                                            |  |  |  |  |  |
|         |                                                                                                                                                                                 |                                                                                            |            |                                                                            |  |  |  |  |  |

Rough Work