Entrance Test: 12th (Beta)

MM : 180
Time: 2 Hours

PLEASE FILL IT IN CAPITAL LETTERS

$\begin{array}{llllll}\text { Enrollment No. } & \square & \square & \square & \square & \square\end{array}$
Students Name :

Father's Name :

School :

Previous institute (if any) :

CGPA/\% in $11^{\text {th }} \quad:$

| Achievements $: \quad$ (NTSE/OLYMPIAD etc if any) |
| :--- | :--- | :--- |

I hereby admit that all the information given here is true and in case of any discrepancy I shall be liable for any action.
(Invigilator)
(Student's Signature)

PART - I : MATHS

SECTION - I (Single Correct Choice Type)

This Section contains 20 Single choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

Marking Scheme:

You will be awarded $\mathbf{3}$ marks for correct answer, $\mathbf{- 1}$ for wrong answer and zero if Question is left un-attempted.

1. If $a, b, c \in R$ and $(a+b+c) c<0$, then the quadratic equation $p(x)=a x^{2}+b x+c=0$ has
(a) two negative roots
(b) two real roots
(c) two imaginary roots
(d) none of these

Answer: \square
2. The set of all values of k for which the equation $x^{2}+2(k-1) x+(k-5)=0$ has at least one non-negative root is
(a) $[1, \infty)$
(b) $[-1,1]$
(c) $(-\infty,-5]$
(d) $(-\infty, 5]$

Answer: \square
3. If roots of the equation $x^{2}-2 m x+m^{2}-1=0$ lie in the interval $(-2,4)$, then
(a) $-1<m<3$
(b) $1<m<5$
(c) $1<m<3$
(d) $-1<m<5$

Answer: \square
4. If x is real, then the least value of the expression $\frac{x^{2}-6 x+5}{x^{2}+2 x+2}$ is
(a) -1
(b) $-1 / 3$
(c) $-1 / 2$
(d) none of these

Answer: \square
5. Given a sequence of four numbers such that the first three are in G.P. and the last three are in A.P. with common difference 6. If the first and the fourth number are equal, then common ratio of the G.P. is
(a) -2
(b) 2
(c) 3
(d) -3

Answer : \square
6. If x, y, z are real and $4 x^{2}+9 y^{2}+16 z^{2}-6 x y-12 y z-8 z x=0$, then x, y, z are
(a) A.P.
(b) G.P.
(c) H.P.
(d) none of these

Answer : \square
7. Let $a_{n}=\underbrace{111 \ldots \ldots . .1}_{\text {ntimes }}$. The remainder when a_{124} is divided by 271 is
(a) 23
(b) 25
(c) 27
(d) 29

Answer : \square
8. Sum of the series $S=(n)(n)+(n-1)(n+1)+(n-2)(n+2)+\ldots .+1(2 n+1)$ is
(a) n^{3}
(b) $\frac{1}{6} n(n+1)(n+2)$
(c) $\frac{1}{3} n^{3}-n^{2}$
(d) none of these

Answer: \square
9. The number of 10 digit numbers that can be written by using the digits 2 and 3 is
(a) ${ }^{10} \mathrm{C}_{2}+{ }^{9} \mathrm{C}_{2}$
(b) $\quad 2^{10}$
(c) $\quad 2^{10}-2$
(d) 10 !

Answer: \square
10. The number of ways in which we can get a score of 11 by throwing three dice is
(a) 18
(b) 27
(c) 45
(d) 56

Answer: \square
11. The number of ways in which we can distribute $m n$ students equally among m sections is given by
(a) $\frac{(m n)!}{n!}$
(b) $\frac{(\mathrm{mn})!}{(\mathrm{n}!)^{m}}$
(c) $\frac{(\mathrm{mn})!}{\mathrm{m}!\mathrm{n}!}$
(d) $\quad(\mathrm{mn})^{m}$

Answer: \square
12. If a polygon has 90 diagonals, the number of its sides is given by
(a) 12
(b) 11
(c) 10
(d) 15

Answer: \square
13. If the middle term in the expansion of $\left(\frac{1}{x}+x^{\log _{2} x}\right)^{5}$ is 40 then x equals
(a) $1 / \sqrt{2}, 2$
(b) $\sqrt{2}, 4$
(c) $1 / \sqrt{2}, 4$
(d) $\sqrt{2}, 1 / \sqrt{2}$

Answer : \square
14. If the third term in the expansion $\left(x+x^{\log _{5} x}\right)^{5}$ is 2 , then x equals
(a) $1 / 5,5$
(b) $1 / 5, \sqrt{5}$
(c) $\sqrt{5}, 5$
(d) $1 / \sqrt{5}, 5$

Answer: \square
15. Coefficient of x^{9} in the expansion of
$\left(x^{3}+\frac{1}{2^{\log _{\sqrt{2}}\left(x^{3 / 2}\right)}}\right)^{11}$
is
(a) -5
(b) 330
(c) 520
(d) $5+\log _{\sqrt{2}}(3)$

Answer: \square
16. If three successive coefficient in the expansion of $(1+x)^{n}$ are in A.P., then $(n+2)$ is
(a) at least 19
(b) at most 19
(c) a perfect square
(d) a perfect cube

Answer: \square
17. If $\tan \alpha=5 / 6$ and $\tan \beta=1 / 11$, then
(a) $\alpha+\beta=\pi / 6$
(b) $\alpha+\beta=\pi / 4$
(c) $\alpha+\beta=\pi / 3$
(d) none of these

Answer: \square
18. If $\sin \alpha+\cos \alpha=\frac{\sqrt{7}}{2}, 0<\alpha<\frac{\pi}{6}$, then $\tan \frac{\alpha}{2}$ is equal to
(a) $\sqrt{7}-2$
(b) $\quad(1 / 3)(\sqrt{7}-2)$
(c) $2-\sqrt{7}$
(d) $(1 / 3)(2-\sqrt{7})$

Answer : \square
19. If the lines $x+2 a y+a=0, x+3 b y+b=0$ and $x+4 c y+c=0$ are concurrent, then a, b, c are in
(a) A.P.
(b) G.P.
(c) H.P.
(d) none of these

Answer : \square
20. The straight lines $4 x-3 y-5=0, x-2 y-10=0,7 x+y-40=0$ and $x+3 y+10=0$ form the sides of a
(a) quadrilateral
(b) cyclic quadrilateral
(c) rectangle
(d) parallelogram

Answer: \square

PART - II : Physics

SECTION - I (Single Correct Choice Type)

This Section contains 20 Single choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

Marking Scheme:

You will be awarded $\mathbf{3}$ marks for correct answer, $\mathbf{- 1}$ for wrong answer and zero if Question is left un-attempted.
21. The displacement-time graph of a moving particle is shown in the adjoining figure. The instantaneous velocity of the particle is negative at the point :

(a) D
(b) F
(c) C
(d) E

Answer: \square
22. Two balls of different masses m_{a} and m_{b} are dropped from two different heights, viz, a and b. The ratio of times taken by the balls to drop through these distances is:
(a) $a: b$
(b) $\mathrm{b}: \mathrm{a}$
(c) $\sqrt{a}: \sqrt{b}$
(d) $a^{2}: b^{2}$

Answer : \square
23. A point moves with uniform acceleration and v_{1}, v_{2} and v_{3} denote the average velocities in the three successive intervals of time t_{1}, t_{2} and t_{3}. Which of the relation given below is correct?
(a) $\left(v_{1}-v_{2}\right):\left(v_{2}-v_{3}\right)=\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right):\left(\mathrm{t}_{2}+\mathrm{t}_{3}\right)$
(b) $\left(v_{1}-v_{2}\right):\left(v_{2}-v_{3}\right)=\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right):\left(\mathrm{t}_{2}+\mathrm{t}_{3}\right)$
(c) $\left(v_{1}-v_{2}\right):\left(v_{2}-v_{3}\right)=\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right):\left(\mathrm{t}_{1}-\mathrm{t}_{3}\right)$
(d) $\left(v_{1}-v_{2}\right):\left(v_{2}-v_{3}\right)=\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right):\left(\mathrm{t}_{2}-\mathrm{t}_{3}\right)$

Answer : \square
24. The velocity v and displacement r of a body are related as $v^{2}=\mathrm{kr}$, where k is a constant. What will be the velocity after 1 second? (Given that the displacement is zero at $\mathrm{t}=0$)
(a) $\sqrt{k r}$
(b) $\mathrm{kr}^{3 / 2}$
(c) $\frac{k}{2} r^{0}$
(d) Data is not sufficient

Answer:

25. A ball whose kinetic energy is E , is thrown at an angle of 45° with the horizontal, its kinetic energy at the highest point of its flight will be :
(a) E
(b) $\frac{\mathrm{E}}{\sqrt{2}}$
(c) $\frac{\mathrm{E}}{2}$
(d) zero

Answer: \square
26. A aeroplane moving horizontally with a speed of $180 \mathrm{~km} / \mathrm{hr}$ drops a food packet while flying at a height of 490 m . The horizontal range is :
(a) 180 m
(b) 980 m
(c) 500 m
(d) 670 m

Answer : \square
27. Two tall building are 30 m apart. The speed with which a ball must be thrown horizontally from a window 150 m above the ground in one building so that it enters a window 27.5 m from the ground in the other building is :
(a) $2 \mathrm{~ms}^{-1}$
(b) $6 \mathrm{~ms}^{-1}$
(c) $4 \mathrm{~ms}^{-1}$
(d) $8 \mathrm{~ms}^{-1}$

Answer: \square
28. Two blocks of masses 2 kg and 1 kg are in contact with each other on a frictionless table. When a horizontal force of 3.0 N is applied to the block of mass 2 kg , the value of the force of contact between the two blocks is :
(a) 4 N
(b) 3 N
(c) 2 N
(d) 1 N

Answer: \square
29. Two masses of 10 kg and 20 kg respectively are connected by a massless spring as shown in figure. A force of 200 N acts on the 20 kg mass. At the instant when the 10 kg mass has an acceleration of $12 \mathrm{~ms}^{-2}$, the acceleration of the 20 kg mass is :

(a) $2 \mathrm{~ms}^{-2}$
(b) $4 \mathrm{~ms}^{-2}$
(c) $10 \mathrm{~ms}^{-2}$
(d) $20 \mathrm{~ms}^{-2}$

Answer: \square
30. A block is dragged on a smooth plane with the help of a rope which moves with a velocity v as shown in figure. The horizontal velocity of the block is :

(a) v
(b) $\frac{v}{\sin \theta}$
(c) $\quad v \sin \theta$
(d) $\frac{v}{\cos \theta}$

Answer : \square
31. Three masses of $1 \mathrm{~kg}, 6 \mathrm{~kg}$ and 3 kg are connected to each other with threads and are placed on a table as shown in figure.

What is the acceleration with which the system is moving? (Take $\mathrm{g}=10 \mathrm{~ms}^{-2}$)
(a) Zero
(b) $1 \mathrm{~ms}^{-2}$
(c) $2 \mathrm{~ms}^{-2}$
(d) $3 \mathrm{~ms}^{-2}$

Answer: \qquad
32. Work done in time t on a body of mass m which is accelerated from rest to a spread v in time t_{1} as a function of time t is given by :
(a) $\frac{1}{2} m \frac{v}{t_{1}} t^{2}$
(b) $\mathrm{m} \frac{v}{\mathrm{t}_{1}} \mathrm{t}^{2}$
(c) $\frac{1}{2}\left(\frac{m v}{t_{1}}\right)^{2} \mathrm{t}^{2}$
(d) $\frac{1}{2} m \frac{v^{2}}{t_{1}^{2}} \mathrm{t}^{2}$

Answer: \square
33. Work-energy theorem is valid in the presence of:
(a) external forces only
(b) internal forces only
(c) conservative forces only
(d) non-conservatives forces only
(e) all types of forces

Answer : \square
34. A mass of 0.5 kg moving with a speed of $1.5 \mathrm{~m} / \mathrm{s}$ on a horizontal smooth surface, collides with a nearly weightless spring of force constant $\mathrm{K}=50 \mathrm{~N} / \mathrm{m}$. The maximum compression of the spring would be :

(a) 0.15 m
(b) 0.12 m
(c) 1.5 m
(d) 0.5 m

Answer : \square
35. A body is dropped from a height h. If it acquires a momentum p, then the mass of the body is :
(a) $\frac{\mathrm{p}}{\sqrt{2 \mathrm{gh}}}$
(b) $\frac{p^{2}}{2 g h}$
(c) $\frac{2 \mathrm{gh}}{\mathrm{p}}$
(d) $\sqrt{\frac{2 g h}{p}}$

Answer: \square
36. A system consists of mass M and $\mathrm{m}(\ll \mathrm{M})$. The centre of mass of the system is:
(a) at the middle
(b) nearer to M
(c) nearer to m
(d) at the position of larger mass

Answer : \square
37. A spherical hollow is made in a lead sphere of radius R, such that its surface touches the outside surface of lead sphere and passes through the centre. What is the shift in the centre of mass of lead sphere due to the hollowing?

(a) $\frac{R}{7}$
(b) $\frac{\mathrm{R}}{14}$
(c) $\frac{R}{2}$
(d) R

Answer: \square
38. Masses of 2 kg each are placed at the corners B and A of a rectangular plate $A B C D$ as shown in the figure. A mass of 8 kg has to be placed on the plate so that the centre of mass of the system should be at the centre O . Then the mass should

be placed at :
(a) 1 m from O on OE
(b) 2 m from O on OF
(c) 2 m from O on $\mathrm{OG}(\mathrm{d}) \quad 2 \mathrm{~m}$ from O on OH

Answer: \square
39. A block Q of mass M is placed on a horizontal frictionless surface $A B$ and a body P of mass m is released on its frictionless slope. As P slides by a length L on this slope of inclination θ, the block Q would slide by a distance :

(a) $\frac{m}{M} L \cos \theta$
(b) $\frac{m}{(M+m)} L$
(c) $\frac{(\mathrm{M}+\mathrm{m})}{\mathrm{mL} \cos \theta}$
(d) $\frac{\mathrm{mL} \cos \theta}{(\mathrm{m}+\mathrm{M})}$

Answer: \square
40. Four partiles of masses $m_{1}=2 m, m_{2}=4 m, m_{3}=m$ and m_{4} are placed at four corners of a square. What should be the value of m_{4} so that the centres of mass of all the four particles are exactly at the centre of the square?

(a) $2 m$
(b) 8 m
(c) 6 m
(d) None of these

Answer : \square

PART - III : Chemistry

SECTION - I (Single Correct Choice Type)

This Section contains 20 Single choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

Marking Scheme:

You will be awarded $\mathbf{3}$ marks for correct answer, $\mathbf{- 1}$ for wrong answer and zero if Question is left un-attempted.
41. The crystalline salt $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot \mathrm{XH}_{2} \mathrm{O}$ on heating loses 55.9% of its weight. The formula of the crystalline salt is :
(a) $\mathrm{Na}_{2} \mathrm{SO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
(d) $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$

Answer :

42. In the reaction, $2 \mathrm{Al}(\mathrm{s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{Al}^{3+}(\mathrm{aq})+6 \mathrm{Cl}^{-}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$
(a) $11.2 \mathrm{~L} \mathrm{H}_{2}(\mathrm{~g})$ at STP is produced for every mole $\mathrm{HCl}(\mathrm{aq})$ consumed
(b) $6 \mathrm{~L} \mathrm{HCl}(\mathrm{aq})$ is consumed for every $3 \mathrm{~L} \mathrm{H}_{2}(\mathrm{~g})$ produced.
(c) $33.6 \mathrm{~L} \mathrm{H} \mathrm{H}_{2}(\mathrm{~g})$ is produced regardless of temperature and pressure for every mole of Al that reacts.
(d) $67.2 \mathrm{~L} \mathrm{H}_{2}(\mathrm{~g})$ at STP is produced for evert mole of Al that reacts.

Answer : \square
43. Which has maximum number of atoms?
(a) 24 g of C (12)
(b) 56 g of Fe (56)
(c) 27 g og Al (27)
(d) 108 g of $\mathrm{Ag}(108)$

Answer : \square
44. The weight of a molecule of the compound $\mathrm{C}_{60} \mathrm{H}_{122}$ is:
(a) $1.4 \times 10^{-21} \mathrm{~g}$
(b) $1.09 \times 10^{-21} \mathrm{~g}$
(c) $5.025 \times 10^{23} \mathrm{~g}$
(d) $16.023 \times 10^{23} \mathrm{~g}$

Answer :

45. 6.02×10^{20} molecules of urea are present in 100 mL of its solution. The concentration of solution is
(a) 0.001 M
(b) 0.1 M
(c) 0.02 M
(d) $\quad 0.01 \mathrm{M}$

Answer : \square
46. The angular momentum of electrons in the hydrogen atom that can be possible is :
(a) $\frac{h}{\pi}$
(b) 2 h
(c) $\frac{h}{4 \pi}$
(d) $\mathrm{h} \times \pi$

Answer: \square
47. The kinetic energy of an electron in the second Bohr orbit of a hydrogen atom is [a_{0} is Bohr radium] :
(a) $\frac{\mathrm{h}^{2}}{4 \pi^{2} \mathrm{ma}_{0}^{2}}$
(b) $\frac{\mathrm{h}^{2}}{16 \pi^{2} \mathrm{ma}_{0}^{2}}$
(c) $\frac{\mathrm{h}^{2}}{32 \pi^{2} \mathrm{ma}_{0}^{2}}$
(d) $\frac{\mathrm{h}^{2}}{64 \pi^{2} \mathrm{ma}_{0}^{2}}$

Answer : \square
48. $\quad \mathbf{P}$ is the probability of finding the 1 s electron of hydrogen atom in a spherical shell of infinitesimal thickness dr , at a distance r from the nucleus. The volume of this shell is $4 \pi r^{2} d r$. The qualitative sketch of the dependence of P on r is :
(a)

(b)

(c)

(d)

Answer : \square
49. The correct order of second ionization enthalpy of carbon, nitrogen, oxygen and fluorine is :
(a) $\mathrm{C}>\mathrm{N}>\mathrm{O}>\mathrm{F}$
(b) $\mathrm{O}>\mathrm{N}>\mathrm{F}>\mathrm{C}$
(c) $\mathrm{O}>\mathrm{F}>\mathrm{N}>\mathrm{C}$
(d) $\mathrm{F}>\mathrm{O}>\mathrm{N}>\mathrm{C}$

Answer: \square
50. Which of the following oxides is most acidic?
(a) $\mathrm{Cl}_{2} \mathrm{O}$
(b) $\mathrm{Cl}_{2} \mathrm{O}_{3}$
(c) $\mathrm{Cl}_{2} \mathrm{O}_{5}$
(d) $\mathrm{Cl}_{2} \mathrm{O}_{7}$

Answer: \square
51. Which of the following sets of ions represents a collection of isoelectronic species?
(a) $\mathrm{N}^{3-}, \mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{S}^{2-}$
(b) $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}$
(c) $\mathrm{K}^{+}, \mathrm{Cl}^{-}, \mathrm{Ca}^{2+}<\mathrm{Sc}^{3+}$
(d) $\mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}<\mathrm{K}^{+}, \mathrm{Ca}^{2+}$

Answer: \square
52. Hybridisation on sulphur atom in SO_{2} and SO_{3} is :
(a) sp^{3}
(b) sp^{2}
(c) sp^{2} and sp^{3}
(d) sp

Answer : \square
53. Main axis of a diatomic molecule is Z. Atomic orbitals p_{x} and p_{y} overlap to form which of the following orbital ?
(a) π-molecular orbital
(b) σ-molecular orbital
(c) δ-molecular orbital
(d) no bond will form

Answer: \square
54. In NO_{3}^{-}ion, the number of bond pairs and lone pair of electrons on nitrogen atom are :
(a) 2,2
(b) 3,1
(c) 1,3
(d) 4,0

Answer: \square
55. Which of the following species is non-linear?
(a) ICl_{2}^{-}
(b) I_{3}^{-}
(c) N_{3}^{-}
(d) ClO_{2}^{-}

Answer: \square
56. Which one of the following pair is isostructural (i.e., having the same shape and hybridization)?
(a) $\left[\mathrm{BCl}_{3}\right.$ and $\left.\mathrm{BrCl}_{3}\right]$
(b) $\left[\mathrm{NH}_{3}\right.$ and $\left.\mathrm{NO}_{3}^{-}\right]$
(c) $\left[\mathrm{NF}_{3}\right.$ and $\left.\mathrm{BF}_{3}\right]$
(d) $\left[\mathrm{BF}_{4}^{-}\right.$and $\left.\mathrm{NH}_{4}^{+}\right]$

Answer: \square
57. Consider the molecules $\mathrm{CH}_{4}, \mathrm{NH}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$. Which of the given statements is false?
(a) The $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle in $\mathrm{H}_{2} \mathrm{O}$ is smaller than the $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle in NH_{3}.
(b) The $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angle in CH_{4} is larger than the $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle in NH_{3}
(c) The $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angle in CH_{4}, the $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle in NH_{3}, and the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle in $\mathrm{H}_{2} \mathrm{O}$ are all greater than 90°
(d) The $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle in $\mathrm{H}_{2} \mathrm{O}$ is larger than the $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angle in CH_{4}

Answer : \square
58. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$ (solid) $\rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{~S}$

The total pressure at equilibrium is 9 atm. Calculate K_{p} :
(a) $9 \mathrm{~atm}^{2}$
(b) $81 \mathrm{~atm}^{3}$
(c) $108 \mathrm{~atm}^{3}$
(d) None of these

Answer : \square
59. The initial pressure for the dissociation reaction $A_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~A}(\mathrm{~g})$ is 1 atm and increases by 20% when the reaction reaches the equilibrium state. The K_{p} for the reaction is:
(a) 0.1 atm
(b) 0.2 atm
(c) 1 atm
(d) 2 atm

Answer : \square
60. In which of the following gaseous reactions increases in volume of the container causes a shift to right?
(a) $2 \mathrm{CO}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{CO}_{2}$
(b) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
(c) $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
(d) $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightleftharpoons 2 \mathrm{HCl}$

Answer :

